
SoK: ATT&CK Techniques and Trends in
Windows Malware

Kris Oosthoek and Christian Doerr

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
{k.oosthoek,c.doerr}@tudelft.nl

http://www.cyber-threat-intelligence.com

Abstract In an ever-changing landscape of adversary tactics, techniques
and procedures (TTPs), malware remains the tool of choice for attackers
to gain a foothold on target systems. The Mitre ATT&CK framework
is a taxonomy of adversary TTPs. It is meant to advance cyber threat
intelligence (CTI) by establishing a generic vocabulary to describe post-
compromise adversary behavior. This paper discusses the results of auto-
mated analysis of a sample of 951 Windows malware families, which have
been plotted on the ATT&CK framework. Based on the framework’s
tactics and techniques we provide an overview of established techniques
within Windows malware and techniques which have seen increased ad-
option over recent years. Within our dataset we have observed an in-
crease in techniques applied for fileless execution of malware, discovery
of security software and DLL side-loading for defense evasion. We also
show how a sophisticated technique, command and control (C&C) over
IPC named pipes, is getting adopted by less sophisticated actor groups.
Through these observations we have identified how malware authors are
innovating techniques in order to bypass established defenses.

Keywords: Malware Analysis · ATT&CK Framework · Classification ·
Cyber Threat Intelligence · Advanced Persistent Threats.

1 Introduction

Malware continues to spread increasingly and with serious consequences for or-
ganizations and private individuals. According to the 2018 Verizon Data Breach
Investigations Report, malware is the primary attack tactic in 30 percent of data
breaches [30]. Attackers keep innovating their TTPs to circumvent established
defenses that could impede their modus operandi. As attackers continue to in-
crease the sophistication of their techniques, the collection of CTI on attacker
innovation is fundamental to inform adequate mitigation.

Obtaining such insight from malware analysis has become increasingly chal-
lenging as a result of evasion techniques such as polymorphism and metamorph-
ism now being widely applied [3] and even available ‘as a service’ to cybercrimin-
als [25]. Crimeware toolkits like Zeus have provided cybercriminals with effective
malware kits difficult to detect using conventional mitigations [4]. The vast flood



2 K. Oosthoek and C. Doerr

of new malware embedding improved TTPs has resulted in a ‘weapons race’ [20]
between developers of malware and anti-malware software. To obtain objective
and reliable CTI on advances in malware, the study of innovation within indi-
vidual malware families needs to be supplemented with an overview of innovation
within the malware ecosystem by and large.

To build a common understanding of the TTPs observed through such ana-
lysis, malware research benefits from the adoption of a common taxonomy that
facilitates the dissemination of CTI from malware analysis. To date the field of
malware research has not reached consensus on the adoption of such a reporting
standard.

For this paper, an automated analysis of samples from 951 unique families of
Windows malware was performed. To discuss the results of that analysis we have
mapped them onto the industry-standard ATT&CK framework by Mitre, fur-
ther referred to as the ATT&CK framework. The framework describes malware
techniques in their tactical context and allows for a common understanding of
post-compromise malware behavior. Because it considers techniques in the con-
text of the attack life cycle instead of viewing them as separate artifacts, use
of the framework informs more effective detection and mitigation of identified
techniques. This is the first study to apply an industry-accepted taxonomy to
the analysis of a large corpus of malware. In doing so it provides insight in the
adoption of innovative techniques for execution, discovery and C&C. We make
the following contributions:

– We have applied an industry-standard CTI framework to malware analysis
results in order to advance dissemination of CTI from malware analysis.

– We have studied behavior in a sample of Windows malware, through which
we are able to observe how malware authors are implementing techniques.

– We have identified trends in the implementation of fileless execution of mal-
ware, discovery of security software and DLL side-loading.

– We also show how a sophisticated technique, C&C via IPC named pipes, is
adopted by less sophisticated actor groups.

– We have evaluated the potential and limitations for using automated mal-
ware analysis as a source for CTI.

The remainder of this paper is structured as follows: Section 2 provides an
overview of related work on automated analysis and malware classification. Sec-
tion 3 outlines the ATT&CK framework. Section 4 describes the methodology of
our analysis. Section 5 presents the results using the common language offered
by ATT&CK. Section 6 presents a sophisticated technique of which we have
observed increasing adoption. Section 7 describes the limitations of using auto-
mated analysis for CTI. Section 8 summarizes of our findings.

2 Related work

Two types of previous work are important to position our work. First, other
studies on automated malware analysis and second with regards to standardized
reporting of malware behavior.



ATT&CK Techniques in Windows Malware 3

Automated analysis Among the earliest to analyze a large corpus of Windows
malware were Willems et al., introducing CWSandbox and presenting its results
based on the analysis of 6,148 malware binaries [31]. Bayer et al. have pub-
lished about the now discontinued Anibus platform, which they used to analyze
malware samples gathered in the wild from 2007 until 2008 [3]. By classifying
the observed malicious behavior into common areas of host activity, they did
provide important insight into the behavior of malware on a host after infection.
Another significant contribution was made by Song et al., who have combined
static and dynamic methods in BitBlaze, which is now also discontinued [24].
Other researchers have focused on the automated analysis of specific categories
of malware such as ransomware [10], as well as evasive malware [11], encryp-
tion and packers [14] and anti-virtualization and anti-debugging in malware [5].
More recently, Grill et al. [7] conducted a study of bootkit technology based on
the analysis of 29 bootkit families observed from 2006 until 2014. However, the
malware landscape is subject to rapid evolution and most research studying a
larger corpus of Windows malware does not include the analysis of trends.

Taxonomies The use of a common language, also referred to as classifica-
tion or taxonomy, is vital for malware analysis to inform CTI unambiguously.
Researchers from academia and industry have recognized this gap. One of the
earliest steps were taken by Kirilov et al. at Mitre [12], who recognized that com-
munication of malware analysis results is impeded by the absence of a standard
for the characterization of malware. They proposed the Malware Attribute Enu-
meration and Characterization (MAEC), which encodes malware behavior and
has gained some industry adoption. Other researchers have pointed out the need
for a higher-level taxonomy that explains the behavior of malware within the
broader context of an attack [19]. Building on existing models from traditional
areas of defense, Lockheed Martin Corporation developed the Cyber Kill Chain
[8]. The philosophy behind this model is that effective mitigation of malicious
activity is driven by knowledge about an actor’s TTPs. The Cyber Kill Chain
describes malicious activity based on seven discrete phases, but it is argued that
it is insufficient in doing so. The model is criticized for emphasizing pre-intrusion
activity [18] at the expense of post-intrusion activity [18,13]. As pre-compromise
activity takes place outside the network perimeter it can not be observed, as
description of such activity is mostly based on assumptions. As the model does
not include common attack tactics as privilege escalation and lateral movement,
the Cyber Kill Chain is less suited towards the full reporting of an attack’s life
cycle. Researchers at Mitre recognized this gap and have published a behavioral
model named ATT&CK [26], which will be discussed in the next section.

Several authors have made significant contributions studying malware using
automated analysis tools. This needs to be supplemented with analysis reported
using an established taxonomy to further extend the common understanding of
malware behavior. This study is the first to use the industry-standard ATT&CK
framework to present the results of a large representative sample of malware.



4 K. Oosthoek and C. Doerr

3 The Mitre ATT&CK Framework

The ATT&CK framework was originally created by Mitre as it was recognized
that existing reference models were insufficient in categorizing post-compromise
activity into attacker TTPs [26]. ATT&CK distinguishes between tactics and
techniques. Tactics describe adversary goals, techniques are the technical means
through which goals are achieved. The authors position ATT&CK as an ad-
versary model which standardizes both the tactics and the technical capabilities
used after an initial foothold has been gained. The framework design also separ-
ates pre-compromise and post-compromise activity. The PRE-ATT&CK model
focuses on attacker activity prior to delivery and exploitation and is independent
of any technology platform as it offers a categorization of an attacker’s recon-
naissance activity, most of which cannot or only partially be detected. The En-
terprise model covers on techniques implemented over the full attack life cycle on
Windows, Linux and macOS, platforms commonly implemented within an enter-
prise context. Attack techniques targeting Android and iOS are contained in a
separate model. Over the last couple of years, the framework has become the in-
dustry standard for describing malware techniques and attacker campaigns. The
model has been open-sourced by Mitre and is being implemented in industry
products. The Mitre ATT&CK website contains a knowledge base complement-
ing the framework with observations of actor-attributed adversary TTPs from
vendor reports.

The framework categorizes the attack life cycle according to different stages,
called tactics. Tactics describe the objectives of an adversary within the life cycle
of an attack. The tactics within the current framework version are as follows:

1. Initial Access: establishing an initial foothold on the target host.
2. Execution: how the malicious code is executed on the target host.
3. Persistence: all methods to maintain access to the compromised host.
4. Privilege Escalation: elevating access to other host or network resources.
5. Defense Evasion: all techniques used to avoid detection or other defenses.
6. Credential Access: obtaining credentials to expand control of resources.
7. Discovery : obtaining contextual awareness of the target system and network.
8. Lateral Movement : techniques implemented to pivot across other systems.
9. Collection: how information that will be sent to the attacker is collected.

10. Exfiltration: transferring information acquired in the process to the attacker.
11. Command and Control : the attacker exerting control over the infected host(s).

Each tactic serves as a class of the techniques implemented to accomplish
that tactic. For example, to establish persistence (tactic), malware can add a run
key to the registry (technique). The framework’s techniques describe the steps
taken on a technical level. Refer to figure 1 for an overview of the categorization
of tactics and relevant techniques within the framework. Section 5 will further
elaborate on the results displayed in this figure.

Techniques can either be defined generally or specific and be platform-agnostic
or platform-specific, depending on how a technique is implemented. Process In-
jection is an example of a general technique that applies to several platforms



ATT&CK Techniques in Windows Malware 5

in many variations, where Regsvr32 is a technique with a very specific use case
only applicable to the Windows platform. Techniques might appear within two
or three tactic categories if applicable. An example of such technique can be seen
in figure 1. The Scheduled Task technique appears under the Execution, Persist-
ence and Privilege Escalation tactic, as the same technique can be employed
within three tactical contexts. This paper will further reference the Windows
techniques from the Enterprise ATT&CK framework, as our research focuses on
observations of post-compromise activity in Windows malware.

4 Methodology

Dataset The malware samples used for this research were gathered from Mal-
pedia, a collaborative research platform with an established corpus of malware
maintained by Fraunhofer FKIE [21]. The maintainers adhere to the require-
ments for correctly composed malware datasets, as described by Rossow et al.
[23]. This implies that, among other requirements, the maintainers attempt to
balance their dataset to avoid it being overshadowed by polymorphic families and
that malware samples are annotated with family names and further metadata.
Furthermore a carefully curated dataset should favor quality over quantity in
order to yield representative results [2,1]. Malpedia aims to provide researchers
with a regulated corpus representative of prevalent and timely malware families
and code evolution within the malware ecosystem [21]. As a result a curated
dataset like Malpedia provides stronger quality assurances than a corpus of mal-
ware gathered in the wild.

This research concentrates on Windows malware. Most malware is Windows
malware, as Windows is the predominant end-user platform for enterprise and
private use. At the time we collected our sample, the corpus of Windows malware
available from Malpedia contained 951 unique families first observed in 2007
until 2018. From each Windows malware family collected from Malpedia we
have selected the most recent sample based on data from VirusTotal to increase
the probability of observing C&C traffic during runtime. For malware families
consisting of multiple modules, such as stagers, we have selected the most recent
version of each module. The malware family names mentioned within this paper
are derived from Malpedia’s metadata.

Experimental environment For the analysis of the samples in the malware
corpus we have used Joe Sandbox Cloud, a public environment for malware
analysis [9], formerly known as JoeBox [6]. It combines automated dynamic
analysis with basic features for static and network analysis. Given that Malpedia
does not include malware that strictly requires a version of Windows later than
Windows 7 [21], we have deployed the samples in a sandbox running Windows 7
32-bit or 64-bit depending on detected target architecture, with a configuration
of commonly used applications. The reports generated by the sandbox reference
generic system calls that can be replicated using other analysis environments.



6 K. Oosthoek and C. Doerr

ATT&CK mapping In order to map malware activity reported by the sandbox
engine to techniques described within the ATT&CK framework we have built a
reference file. Through this the behavior signatures generated by the sandbox
during the analysis of the malware corpus were mapped to their corresponding
framework technique. The rationalization to plot a particular sandbox signature
to an ATT&CK technique is justified by the definition of that technique in the
ATT&CK knowledge base [29]. As an example, the sandbox detection signature
for the execution of the IsDebuggerPresent function was mapped to ATT&CK
technique 1063, Security Software Discovery, as checking for active debuggers
is implemented by malware authors as a form anti-debugging. As a sandbox
can detect different behaviors which all map to one ATT&CK technique, one
technique can be described by multiple behavior signatures. Within our results,
different variations of one ATT&CK technique within an individual malware
family only count once towards that technique. Not every activity logged by the
sandbox is necessarily malicious. If behavior described in a sandbox signature
did not accurately match a framework technique, it was not mapped. Of 861
unique behavior signatures outputted by the sandbox, 398 were mapped to an
ATT&CK technique.

5 ATT&CK techniques in Windows malware

This section discusses the results of the analysis of the malware corpus and
their mapping onto the ATT&CK framework. Figure 1 shows a heatmap of the
ATT&CK matrix, with color shading representing the number of observations of
each technique within our analysis. Table 1 shows an overview of the ATT&CK
techniques most common in our analysis. As one sample can perform multiple
executions of the same technique during runtime (e.g. inject into multiple pro-
cesses), this is counted as one instance of that technique towards our results.

The total of techniques observed in our analysis gravitates towards the inner
tactics of the framework, as observed from figure 1. The locus of activity in
intermediate stages is inherent to the nature of automated malware analysis,
which focuses on host and network artifacts from malware runtime. In section 7,
we will focus on the limitations of automated analysis and implications for CTI.

Below we will discuss the observations from our analysis based on the cat-
egorization offered by the ATT&CK framework. Each technique is discussed
within the context of its tactic. Techniques that apply to multiple tactics will be
discussed in the context of the tactic justified by our analysis results.

5.1 Execution

The Execution tactic comprises all techniques through which a malicious actor
can execute code on a target system. Below the most observed techniques for
this tactic from the framework are discussed.

Execution through API We have observed 562 malware samples launching
processes by calling the CreateProcessA function Windows application program-
ming interface (API). Furthermore we have observed many instances of dynamic



ATT&CK Techniques in Windows Malware 7

In
it

ia
l 

A
cc

e
ss

E
x

e
cu

ti
o

n
P

e
rs

is
te

n
ce

 (
1

)
P

e
rs

is
te

n
ce

 (
2

)
P

ri
v

il
e

g
e

 E
sc

a
la

ti
o

n
D

e
fe

n
ce

 E
v

a
si

o
n

 (
1

)
D

e
fe

n
ce

 E
v

a
si

o
n

 (
2

)
C

re
d

e
n

ti
a

l 
A

cc
e

ss
D

is
co

v
e

ry
La

te
ra

l 
M

o
v

e
m

e
n

t
C

o
ll

e
ct

io
n

E
x

fi
lt

ra
ti

o
n

C
o

m
m

a
n

d
 A

n
d

 C
o

n
tr

o
l

D
ri

v
e

-b
y
 C

o
m

p
ro

m
is

e
C

M
S

T
P

A
cc

e
ss

ib
il
it

y
 F

e
a

tu
re

s
Lo

g
o

n
 S

cr
ip

ts
A

cc
e

ss
 T

o
k
e

n

M
a

n
ip

u
la

ti
o

n

A
cc

e
ss

 T
o

k
e

n

M
a

n
ip

u
la

ti
o

n
In

st
a

ll
 R

o
o

t 
C

e
rt

if
ic

a
te

A
cc

o
u

n
t 

M
a

n
ip

u
la

ti
o

n
A

cc
o

u
n

t 
D

is
co

v
e

ry
A

p
p

li
ca

ti
o

n

D
e

p
lo

y
m

e
n

t 
S

o
ft

w
a

re
A

u
d

io
 C

a
p

tu
re

A
u

to
m

a
te

d
 E

xf
il
tr

a
ti

o
n

C
o

m
m

o
n

ly
 U

se
d

 P
o

rt

E
xp

lo
it

 P
u

b
li
c-

F
a

ci
n

g

A
p

p
li
ca

ti
o

n

C
o

m
m

a
n

d
-L

in
e

In
te

rf
a

ce
A

cc
o

u
n

t 
M

a
n

ip
u

la
ti

o
n

LS
A

S
S

 D
ri

v
e

r
A

cc
e

ss
ib

il
it

y
 F

e
a

tu
re

s
B

in
a

ry
 P

a
d

d
in

g
In

st
a

ll
U

ti
l

B
ru

te
 F

o
rc

e
A

p
p

li
ca

ti
o

n
 W

in
d

o
w

D
is

co
v
e

ry

D
is

tr
ib

u
te

d

C
o

m
p

o
n

e
n

t 
O

b
je

ct

M
o

d
e

l

A
u

to
m

a
te

d

C
o

ll
e

ct
io

n
D

a
ta

 C
o

m
p

re
ss

e
d

C
o

m
m

u
n

ic
a

ti
o

n

T
h

ro
u

g
h

 R
e

m
o

v
a

b
le

M
e

d
ia

H
a

rd
w

a
re

 A
d

d
it

io
n

s
C

o
m

p
il
e

d
 H

T
M

L 
F

il
e

A
p

p
C

e
rt

 D
LL

s
M

o
d

if
y
 E

xi
st

in
g

 S
e

rv
ic

e
A

p
p

C
e

rt
 D

LL
s

B
IT

S
 J

o
b

s
M

a
sq

u
e

ra
d

in
g

C
re

d
e

n
ti

a
l 
D

u
m

p
in

g
B

ro
w

se
r 

B
o

o
k
m

a
rk

D
is

co
v
e

ry

E
xp

lo
it

a
ti

o
n

 o
f

R
e

m
o

te
 S

e
rv

ic
e

s
C

li
p

b
o

a
rd

 D
a

ta
D

a
ta

 E
n

cr
y
p

te
d

C
o

n
n

e
ct

io
n

 P
ro

xy

R
e

p
li
ca

ti
o

n
 T

h
ro

u
g

h

R
e

m
o

v
a

b
le

 M
e

d
ia

C
o

n
tr

o
l 
P

a
n

e
l 
It

e
m

s
A

p
p

In
it

 D
LL

s
N

e
ts

h
 H

e
lp

e
r 

D
LL

A
p

p
In

it
 D

LL
s

B
y
p

a
ss

 U
se

r 
A

cc
o

u
n

t

C
o

n
tr

o
l

M
o

d
if

y
 R

e
g

is
tr

y
C

re
d

e
n

ti
a

ls
 i
n

 F
il
e

s
F

il
e

 a
n

d
 D

ir
e

ct
o

ry

D
is

co
v
e

ry
Lo

g
o

n
 S

cr
ip

ts
D

a
ta

 f
ro

m

In
fo

rm
a

ti
o

n
D

a
ta

 T
ra

n
sf

e
r 

S
iz

e
 L

im
it

s
C

u
st

o
m

 C
o

m
m

a
n

d
 a

n
d

C
o

n
tr

o
l 
P

ro
to

co
l

S
p

e
a

rp
h

is
h

in
g

 A
tt

a
ch

m
e

n
t

D
y
n

a
m

ic
 D

a
ta

 E
xc

h
a

n
g

e
A

p
p

li
ca

ti
o

n
 S

h
im

m
in

g
N

e
w

 S
e

rv
ic

e
A

p
p

li
ca

ti
o

n
 S

h
im

m
in

g
C

M
S

T
P

M
sh

ta
C

re
d

e
n

ti
a

ls
 i
n

 R
e

g
is

tr
y

N
e

tw
o

rk
 S

e
rv

ic
e

 S
ca

n
n

in
g

P
a

ss
 t

h
e

 H
a

sh
D

a
ta

 f
ro

m
 L

o
ca

l

S
y
st

e
m

E
xf

il
tr

a
ti

o
n

 O
v
e

r

A
lt

e
rn

a
ti

v
e

 P
ro

to
co

l

C
u

st
o

m
 C

ry
p

to
g

ra
p

h
ic

P
ro

to
co

l

S
p

e
a

rp
h

is
h

in
g

 L
in

k
E

xe
cu

ti
o

n
 t

h
ro

u
g

h
 A

P
I

A
u

th
e

n
ti

ca
ti

o
n

 P
a

ck
a

g
e

O
ff

ic
e

 A
p

p
li
ca

ti
o

n

S
ta

rt
u

p

B
y
p

a
ss

 U
se

r 
A

cc
o

u
n

t

C
o

n
tr

o
l

C
o

d
e

 S
ig

n
in

g
N

e
tw

o
rk

 S
h

a
re

C
o

n
n

e
ct

io
n

 R
e

m
o

v
a

l

E
xp

lo
it

a
ti

o
n

 f
o

r 
C

re
d

e
n

ti
a

l

A
cc

e
ss

N
e

tw
o

rk
 S

h
a

re
 D

is
co

v
e

ry
P

a
ss

 t
h

e
 T

ic
k
e

t
D

a
ta

 f
ro

m
 N

e
tw

o
rk

S
h

a
re

d
 D

ri
v
e

E
xf

il
tr

a
ti

o
n

 O
v
e

r

C
o

m
m

a
n

d
 a

n
d

 C
o

n
tr

o
l

C
h

a
n

n
e

l

D
a

ta
 E

n
co

d
in

g

S
p

e
a

rp
h

is
h

in
g

 v
ia

 S
e

rv
ic

e
E

xe
cu

ti
o

n
 t

h
ro

u
g

h

M
o

d
u

le
 L

o
a

d
B

IT
S

 J
o

b
s

P
a

th
 I

n
te

rc
e

p
ti

o
n

D
LL

 S
e

a
rc

h
 O

rd
e

r

H
ij

a
ck

in
g

C
o

m
p

il
e

d
 H

T
M

L 
F

il
e

N
T

F
S

 F
il
e

 A
tt

ri
b

u
te

s
F

o
rc

e
d

 A
u

th
e

n
ti

ca
ti

o
n

N
e

tw
o

rk
 S

n
if

fi
n

g
R

e
m

o
te

 D
e

sk
to

p

P
ro

to
co

l

D
a

ta
 f

ro
m

R
e

m
o

v
a

b
le

 M
e

d
ia

E
xf

il
tr

a
ti

o
n

 O
v
e

r
O

th
e

r

N
e

tw
o

rk
 M

e
d

iu
m

D
a

ta
 O

b
fu

sc
a

ti
o

n

S
u

p
p

ly
 C

h
a

in
 C

o
m

p
ro

m
is

e
E

xp
lo

it
a

ti
o

n
 f

o
r 

C
li
e

n
t

E
xe

cu
ti

o
n

B
o

o
tk

it
P

o
rt

 M
o

n
it

o
rs

E
xp

lo
it

a
ti

o
n

 f
o

r 
P

ri
v
il
e

g
e

E
sc

a
la

ti
o

n
C

o
m

p
o

n
e

n
t 

F
ir

m
w

a
re

O
b

fu
sc

a
te

d
 F

il
e

s 
o

r

In
fo

rm
a

ti
o

n
H

o
o

k
in

g
P

a
ss

w
o

rd
 P

o
li
cy

 D
is

co
v
e

ry
R

e
m

o
te

 F
il
e

 C
o

p
y

D
a

ta
 S

ta
g

e
d

E
xf

il
tr

a
ti

o
n

 O
v
e

r 
P

h
y
si

ca
l

M
e

d
iu

m
D

o
m

a
in

 F
ro

n
ti

n
g

T
ru

st
e

d
 R

e
la

ti
o

n
sh

ip
G

ra
p

h
ic

a
l 
U

se
r 

In
te

rf
a

ce
B

ro
w

se
r 

E
xt

e
n

si
o

n
s

R
e

d
u

n
d

a
n

t 
A

cc
e

ss
E

xt
ra

 W
in

d
o

w
 M

e
m

o
ry

In
je

ct
io

n

C
o

m
p

o
n

e
n

t 
O

b
je

ct

M
o

d
e

l 
H

ij
a

ck
in

g
P

ro
ce

ss
 D

o
p

p
e

lg
ä

n
g

in
g

In
p

u
t 

C
a

p
tu

re
P

e
ri

p
h

e
ra

l 
D

e
v
ic

e

D
is

co
v
e

ry
R

e
m

o
te

 S
e

rv
ic

e
s

E
m

a
il
 C

o
ll
e

ct
io

n
S

ch
e

d
u

le
d

 T
ra

n
sf

e
r

F
a

ll
b

a
ck

 C
h

a
n

n
e

ls

V
a

li
d

 A
cc

o
u

n
ts

In
st

a
ll
U

ti
l

C
h

a
n

g
e

 D
e

fa
u

lt
 F

il
e

A
ss

o
ci

a
ti

o
n

R
e

g
is

tr
y
 R

u
n

 K
e

y
s 

/

S
ta

rt
u

p
 F

o
ld

e
r

F
il
e

 S
y
st

e
m

 P
e

rm
is

si
o

n
s

W
e

a
k
n

e
ss

C
o

n
tr

o
l 
P

a
n

e
l 
It

e
m

s
P

ro
ce

ss
 H

o
ll
o

w
in

g
K

e
rb

e
ro

a
st

in
g

P
e

rm
is

si
o

n
 G

ro
u

p
s

D
is

co
v
e

ry

R
e

p
li
ca

ti
o

n
 T

h
ro

u
g

h

R
e

m
o

v
a

b
le

 M
e

d
ia

In
p

u
t 

C
a

p
tu

re
M

u
lt

i-
h

o
p

 P
ro

xy

LS
A

S
S

 D
ri

v
e

r
C

o
m

p
o

n
e

n
t 

F
ir

m
w

a
re

S
ch

e
d

u
le

d
 T

a
sk

H
o

o
k
in

g
D

C
S

h
a

d
o

w
P

ro
ce

ss
 I

n
je

ct
io

n
LL

M
N

R
/N

B
T

-N
S

 P
o

is
o

n
in

g
P

ro
ce

ss
 D

is
co

v
e

ry
S

h
a

re
d

 W
e

b
ro

o
t

M
a

n
 i
n

 t
h

e
 B

ro
w

se
r

M
u

lt
i-

S
ta

g
e

 C
h

a
n

n
e

ls

M
sh

ta
C

o
m

p
o

n
e

n
t 

O
b

je
ct

M
o

d
e

l 
H

ij
a

ck
in

g
S

cr
e

e
n

sa
v
e

r
Im

a
g

e
 F

il
e

 E
xe

cu
ti

o
n

O
p

ti
o

n
s 

In
je

ct
io

n

D
e

o
b

fu
sc

a
te

/D
e

co
d

e

F
il
e

s 
o

r 
In

fo
rm

a
ti

o
n

R
e

d
u

n
d

a
n

t 
A

cc
e

ss
N

e
tw

o
rk

 S
n

if
fi

n
g

Q
u

e
ry

 R
e

g
is

tr
y

T
a

in
t 

S
h

a
re

d
 C

o
n

te
n

t
S

cr
e

e
n

 C
a

p
tu

re
M

u
lt

ib
a

n
d

C
o

m
m

u
n

ic
a

ti
o

n

P
o

w
e

rS
h

e
ll

C
re

a
te

 A
cc

o
u

n
t

S
e

cu
ri

ty
 S

u
p

p
o

rt
 P

ro
v
id

e
r

N
e

w
 S

e
rv

ic
e

D
is

a
b

li
n

g
 S

e
cu

ri
ty

T
o

o
ls

R
e

g
sv

cs
/R

e
g

a
sm

P
a

ss
w

o
rd

 F
il
te

r 
D

LL
R

e
m

o
te

 S
y
st

e
m

 D
is

co
v
e

ry
T

h
ir

d
-p

a
rt

y
 S

o
ft

w
a

re
V

id
e

o
 C

a
p

tu
re

M
u

lt
il
a

y
e

r 
E

n
cr

y
p

ti
o

n

R
e

g
sv

cs
/R

e
g

a
sm

D
LL

 S
e

a
rc

h
 O

rd
e

r

H
ij

a
ck

in
g

S
e

rv
ic

e
 R

e
g

is
tr

y

P
e

rm
is

si
o

n
s 

W
e

a
k
n

e
ss

P
a

th
 I

n
te

rc
e

p
ti

o
n

D
LL

 S
e

a
rc

h
 O

rd
e

r

H
ij

a
ck

in
g

R
e

g
sv

r3
2

P
ri

v
a

te
 K

e
y
s

S
e

cu
ri

ty
 S

o
ft

w
a

re

D
is

co
v
e

ry

W
in

d
o

w
s 

A
d

m
in

S
h

a
re

s
R

e
m

o
te

 A
cc

e
ss

 T
o

o
ls

R
e

g
sv

r3
2

E
xt

e
rn

a
l 
R

e
m

o
te

 S
e

rv
ic

e
s

S
h

o
rt

cu
t 

M
o

d
if

ic
a

ti
o

n
P

o
rt

 M
o

n
it

o
rs

D
LL

 S
id

e
-L

o
a

d
in

g
R

o
o

tk
it

T
w

o
-F

a
ct

o
r 

A
u

th
e

n
ti

ca
ti

o
n

In
te

rc
e

p
ti

o
n

S
y
st

e
m

 I
n

fo
rm

a
ti

o
n

D
is

co
v
e

ry

W
in

d
o

w
s 

R
e

m
o

te

M
a

n
a

g
e

m
e

n
t

R
e

m
o

te
 F

il
e

 C
o

p
y

R
u

n
d

ll
3

2
F

il
e

 S
y
st

e
m

 P
e

rm
is

si
o

n
s

W
e

a
k
n

e
ss

S
IP

 a
n

d
 T

ru
st

 P
ro

v
id

e
r

H
ij

a
ck

in
g

P
ro

ce
ss

 I
n

je
ct

io
n

E
xp

lo
it

a
ti

o
n

 f
o

r

D
e

fe
n

se
 E

v
a

si
o

n
R

u
n

d
ll
3

2
S

y
st

e
m

 N
e

tw
o

rk

C
o

n
fi

g
u

ra
ti

o
n

 D
is

co
v
e

ry

S
ta

n
d

a
rd

 A
p

p
li
ca

ti
o

n

La
y
e

r 
P

ro
to

co
l

S
ch

e
d

u
le

d
 T

a
sk

H
id

d
e

n
 F

il
e

s 
a

n
d

D
ir

e
ct

o
ri

e
s

S
y
st

e
m

 F
ir

m
w

a
re

S
ch

e
d

u
le

d
 T

a
sk

E
xt

ra
 W

in
d

o
w

 M
e

m
o

ry

In
je

ct
io

n
S

cr
ip

ti
n

g
S

y
st

e
m

 N
e

tw
o

rk

C
o

n
n

e
ct

io
n

s 
D

is
co

v
e

ry

S
ta

n
d

a
rd

 C
ry

p
to

g
ra

p
h

ic

P
ro

to
co

l

S
cr

ip
ti

n
g

H
o

o
k
in

g
T

im
e

P
ro

v
id

e
rs

S
e

rv
ic

e
 R

e
g

is
tr

y

P
e

rm
is

si
o

n
s 

W
e

a
k
n

e
ss

F
il
e

 D
e

le
ti

o
n

S
ig

n
e

d
 B

in
a

ry
 P

ro
xy

E
xe

cu
ti

o
n

S
y
st

e
m

 O
w

n
e

r/
U

se
r

D
is

co
v
e

ry

S
ta

n
d

a
rd

 N
o

n
-

A
p

p
li
ca

ti
o

n
 L

a
y
e

r

P
ro

to
co

l

S
e

rv
ic

e
 E

xe
cu

ti
o

n
H

y
p

e
rv

is
o

r
V

a
li
d

 A
cc

o
u

n
ts

S
ID

-H
is

to
ry

 I
n

je
ct

io
n

F
il
e

 P
e

rm
is

si
o

n
s

M
o

d
if

ic
a

ti
o

n

S
ig

n
e

d
 S

cr
ip

t 
P

ro
xy

E
xe

cu
ti

o
n

S
y
st

e
m

 S
e

rv
ic

e
 D

is
co

v
e

ry
U

n
co

m
m

o
n

ly
 U

se
d

 P
o

rt

S
ig

n
e

d
 B

in
a

ry
 P

ro
xy

E
xe

cu
ti

o
n

Im
a

g
e

 F
il
e

 E
xe

cu
ti

o
n

O
p

ti
o

n
s 

In
je

ct
io

n
W

e
b

 S
h

e
ll

V
a

li
d

 A
cc

o
u

n
ts

F
il
e

 S
y
st

e
m

 L
o

g
ic

a
l

O
ff

se
ts

S
IP

 a
n

d
 T

ru
st

 P
ro

v
id

e
r

H
ij

a
ck

in
g

S
y
st

e
m

 T
im

e
 D

is
co

v
e

ry
W

e
b

 S
e

rv
ic

e

S
ig

n
e

d
 S

cr
ip

t 
P

ro
xy

E
xe

cu
ti

o
n

W
in

d
o

w
s 

M
a

n
a

g
e

m
e

n
t

In
st

ru
m

e
n

ta
ti

o
n

 E
v
e

n
t

S
u

b
sc

ri
p

ti
o

n

W
e

b
 S

h
e

ll
H

id
d

e
n

 F
il
e

s 
a

n
d

D
ir

e
ct

o
ri

e
s

S
o

ft
w

a
re

 P
a

ck
in

g

T
h

ir
d

-p
a

rt
y
 S

o
ft

w
a

re
W

in
lo

g
o

n
 H

e
lp

e
r 

D
LL

Im
a

g
e

F
il
e

E
xe

cu
ti

o
n

O
p

ti
o

n
s 

In
je

ct
io

n
T

e
m

p
la

te
 I

n
je

ct
io

n
Le

g
e

n
d

T
ru

st
e

d
 D

e
v
e

lo
p

e
r

U
ti

li
ti

e
s

In
d

ic
a

to
r 

B
lo

ck
in

g
T

im
e

st
o

m
p

9
5

0
 o

b
se

rv
a

ti
o

n
s

U
se

r 
E

xe
cu

ti
o

n
In

d
ic

a
to

r 
R

e
m

o
v
a

l

fr
o

m
 T

o
o

ls

T
ru

st
e

d
 D

e
v
e

lo
p

e
r

U
ti

li
ti

e
s

4
5

0
 o

b
se

rv
a

ti
o

n
s

W
in

d
o

w
s 

M
a

n
a

g
e

m
e

n
t

In
st

ru
m

e
n

ta
ti

o
n

In
d

ic
a

to
r 

R
e

m
o

v
a

l 
o

n

H
o

st
V

a
li
d

 A
cc

o
u

n
ts

3
0

0
 o

b
se

rv
a

ti
o

n
s

W
in

d
o

w
s 

R
e

m
o

te

M
a

n
a

g
e

m
e

n
t

In
d

ir
e

ct
 C

o
m

m
a

n
d

E
xe

cu
ti

o
n

W
e

b
 S

e
rv

ic
e

5
0

 o
b

se
rv

a
ti

o
n

s

X
S

L 
S

cr
ip

t 
P

ro
ce

ss
in

g
X

S
L 

S
cr

ip
t 

P
ro

ce
ss

in
g

1
0

 o
b

se
rv

a
ti

o
n

s

Figure 1. ATT&CK Enterprise matrix for Windows heatmap based on observations
for each technique.



8 K. Oosthoek and C. Doerr

linking to the Windows API in order to call functions required for the malware
to fully execute. Although we have observed a decrease in the implementation
of this technique, accounting for 5.88% of total techniques observed in 2009 to
3.09% in 2018, this remains an efficient execution technique as host-based mit-
igation of specific API calls leads to undesirable side-effects.

Rundll32 We have seen 175 samples of malware being capable of executing
a dynamic-link library (DLL) via rundll32.exe. This technique is deployed by
malware for execution as well as defense evasion. Furthermore it can be used sev-
eral times to launch additional modules. Using this technique provides an attack
vector difficult to monitor for as it is also used by benign Windows functions.

Command-Line Interface Within our dataset, 161 samples interact with
the host system via the command-line interface, cmd.exe for the execution of
modules. Several trojan families identified by Malpedia as EvilBunny, Ocean-
salt, Remcos, Sword and WebC2 invoke cmd.exe to setup a backdoor by cre-
ating a TCP reverse shell. Starting 2017, we have observed an increase in the
use of obfuscated command line arguments with cmd.exe, apparently to evade
signature-based detection measures.

Service Execution Another prominent execution vector found is to register
or execute as a service. Found in 115 samples, the observed implementation of
this technique seems to have decreased, accounting for 8.33% of total techniques
observed in 2012 to 1.07% in 2018. A handful of malware families in our dataset
(Carbanak, Koadic, OlympicDestroyer, NetC) has been observed being capable
of executing remote processes via PsExec.exe. As Service Execution directly
executes the service, it is different from the New Service technique, which is
used as a persistence tactic and described in the Persistence section.

Within our dataset we have observed the recent emergence of malware that
only exists in memory, known as fileless malware. Not a novel finding in itself,
we found that the emergence of fileless malware in our dataset overlaps with the
first coverage of the topic in scientific literature [16]. Below we will shortly focus
on malware employing PowerShell and WMI for fileless execution.

PowerShell Within our dataset, 7 families used the PowerShell command-
line for execution. All samples were first observed by VirusTotal in either 2017 or
2018, from families identified by Malpedia as Emotet, Rozena, DNSMessenger,
Ramnit, DownPaper, SnatchLoader and Empire Downloader. Emotet, Ramnit
and SnatchLoader executed PowerShell and called CreateObject to create a shell
object to download and subsequently execute second-stage malware. Rozena was
observed to attempt to create a reverse shell using several encrypted shell scripts
called upon through PowerShell.

Windows Management Instrumentation We found 82 samples accessing
WMI, for example extracting information about the operating system or installed
anti-virus software. As a subset we observed 7 families using the WMI command-
line (WMIC) in the execution of malicious code. We have identified these samples
belonging to families identified on Malpedia as Moker, EternalPetya, Spora,
LatentBot, ISFB, Dropshot, EvilBunny, Ghost RAT, Betabot. All of the samples
which created processes via WMIC were first observed in 2017, except for Moker



ATT&CK Techniques in Windows Malware 9

Table 1. Number of observations per ATT&CK technique in our dataset.

ATT&CK technique Count ATT&CK technique Count

Query Registry 950 Windows Management Instrumentation 82

Security Software Discovery 748 Scripting 71

Process Discovery 684 Uncommonly Used Port 67

System Information Discovery 669 Credential Dumping 56

File and Directory Discovery 658 Modify Existing Service 53

Obfuscated Files or Information 604 Modify Registry 50

Process Injection 597 Screen Capture 48

Data Encrypted 576 Web Service 47

Execution through API 562 Hooking 41

Software Packing 558 Peripheral Device Discovery 35

System Time Discovery 506 Exploitation for Privilege Escalation 33

Remote File Copy 423 Replication Through Removable Media 30

Deobfuscate/Decode Files or Information 378 Scheduled Task 29

Standard Application Layer Protocol 338 Bootkit 26

Registry Run Keys / Start Folder 287 Remote System Discovery 21

New Service 273 Email Collection 20

Application Window Discovery 216 System Service Discovery 19

System Owner/User Discovery 210 Hidden Files and Directories 16

Access Token Manipulation 197 System Network Connections Discovery 15

Rundll32 175 Data from Local System 14

Masquerading 165 Credentials in Files 12

Command-Line Interface 161 Account Discovery 12

File Deletion 135 Network Share Discovery 12

Commonly Used Port 129 Browser Extensions 10

Service Execution 115 Multi-hop Proxy 10

DLL Side-Loading 106 File System Permissions Weakness 8

Standard Cryptographic Protocol 104 Rootkit 8

Disabling Security Tools 98 Indicator Removal on Host 8

System Network Configuration Discovery 97 Data Staged 8

Clipboard Data 94 Remote Desktop Protocol 8

Input Capture 94 NTFS File Attributes 7

in 2015. Out of these families, 5 are attributed to a sophisticated actor group
(EternalPetya, ISFB, Dropshot, EvilBunny, Ghost RAT).

From the deployment of techniques for Execution, we can observe a few
trends. Execution through API and Service Execution seem to have decreased
and the use of obfuscated command lines increased. We have also identified in-
creasing proliferation of WMI and PowerShell for fileless execution, in order to
circumvent common preventive controls such as application whitelisting tools
and leaving no on-disc forensic evidence. With the observed increase of ob-
fuscated cmd.exe command-lines and fileless execution vectors, this indicates
attackers are innovating their execution techniques to establish a foothold on
target hosts. This also shows how the ATT&CK framework is useful to identify
trends in technique adoption within a tactic deployed by attackers.



10 K. Oosthoek and C. Doerr

5.2 Persistence

In order to endure presence on the target system, malware authors employ vari-
ous techniques. Below we review the most observed techniques for this ATT&CK
tactic, including two techniques which have increased over recent years.

Registry Run Keys / Start Folder Adding an autostart key to either
the Windows registry or startup folder is an established persistence technique
amongst malware authors, observed in 287 samples from the dataset. Dropping
portable executable (PE) files to the startup folder directly is another variation
of this technique, seen in 28 samples.

New Service We have observed 273 samples being capable of creating a new
service to be executed at Windows startup. Using the CreateServiceA function
and adding malicious DLLs are popular methods observed in various types of
malware over time, both from sophisticated as lower-level malware authors.

Modify Existing Service We have observed 53 families implementing per-
sistence by adjusting services, either by modifying registry keys using reg.exe in
HKEY LOCAL MACHINE\SYSTEM\ControlSet001\services\ or using sc.exe
to modify the status Windows services, such as Windows Update.

Hooking We found 41 samples capable of hooking various software functions.
Particular examples being banking and POS malware families hooking browser-
specific functions. The deployment of hooking techniques is relatively stable over
the timeframe analyzed. We have observed hooking deployed in more sophist-
icated families such as Snifula, Babar, EquationGroup, Nymaim, DanaBot and
QakBot. Having observed this technique in sophisticated families and being diffi-
cult to mitigate because it abuses fundamental features of the operating system,
this is an important attack vector to monitor for.

Scheduled Task We have observed the implementation of task scheduling
to have increased from 2015, using at.exe and schtasks.exe to trigger execution
on every reboot or even every minute. It is mostly recent ransomware from 2017
and 2018 employing this technique, such as CryptoWire, Jaff, Rapid Ransom
and Sage.

Image File Exection Options Injection Four malware families from 2017
and 2018 have been observed to perform Image File Execution Options Injection
in order to launch a new process by attaching a debugger to a current process.

The implementation of the most observed persistence techniques is relatively
stable. The usage of Registry Run Keys / Start Folder is a known common tech-
nique, but the increase in task scheduling and recent observations of Image File
Execution Options Injection indicates that attackers are seeking new techniques
to bypass common preventive controls in maintaining access to an infected host.

5.3 Privilege Escalation

The techniques described within this tactic are implemented to establish a higher
level of permissions to further increase control over the infected host or network.
Below we cover three techniques most seen within this tactic.



ATT&CK Techniques in Windows Malware 11

Process Injection Of the methods to launch malicious code, process in-
jection is the most popular execution technique in our results, found in 597 of
951 families. The ATT&CK framework recognizes several subtypes of process
injection for Windows, all of which are observed within our dataset. Of the
defined sub-techniques, we have observed 86 instances of DLL injection and 153
samples being capable of portable executable injection. Furthermore we have
found thread execution hijacking in 101 samples and thread local storage (TLS)
callback injection in 51 samples. We have found asynchronous procedure call
(APC) injection in a total of 37 samples. Relative to other methods, PE injec-
tion is the most implemented process injection technique in our dataset.

Access Token Manipulation Being used in 197 samples from our data-
set, this method to manipulate the ownership of active Windows processes is
also a popular technique to escalate privileges. The most common implement-
ation of this technique found in our dataset is through subsequent calls to the
OpenProcessToken, LookupPrivilegeValueA, AdjustTokenPrivileges functions.

Exploitation for Privilege Escalation We have observed 33 samples at-
tempting to access the ShellExecute function, for which a privilege escalation
vulnerability was published in 2014 [17].

Some techniques described in previous tactics can be employed to concur-
rently escalate privileges. A Scheduled Task for execution can also elevate priv-
ileges to SYSTEM. Creating a New Service within a persistence tactic can launch
a service with administrator privileges to execute under escalated SYSTEM priv-
ileges. Although not much evolution between the different approaches to process
injection was observed, it remains the primary vector for elevating privileges. By
distinguishing multiple approaches to this technique, the ATT&CK framework
facilitates a more informed discussion on the mitigation of such attacks.

5.4 Defense Evasion

Malware authors deploy several techniques in a tactic to avoid or subvert de-
tection or mitigation technologies. We have observed four commonly deployed
techniques, with DLL side-loading being on the rise.

Obfuscated Files or Information This ATT&CK technique serves as a
holder of all methods to draw malicious artifacts difficult to detect by obfuscating
its contents in transit or at rest. Our dynamic analysis has found 593 malware
samples with obfuscated instructions. We have also observed 37 malware samples
with .NET source code containing either long sections of Base64 encoded code, as
well the .NET code calling decryption functions CreateDecryptor . Furthermore
we have found 40 samples of malware with inlined NOP slides, which suggests
the presence of obfuscated (shell) code.

Software Packing Packing has become a standard measure to make mali-
cious files more difficult to detect or analyze. Based on zlib compression ratios,
our sandbox detected a total 558 malware samples employing some form of pack-
ing. With regards to specific packers, UPX is a commonly used packer observed
in 54 samples. We have observed 15 samples using RAR archiving for packing.



12 K. Oosthoek and C. Doerr

Table 2. Relative implementation of DLL side-loading from 2011 to 2018.

year 2011 2012 2013 2014 2015 2016 2017 2018

% of total 0.36% 0.29% 0.22% 0.18% 0.51% 0.63% 0.69% 0.82%

Deobfuscate/Decode Files or Information We have observed 359 samples
of malware using string decryption functions to recover obfuscated code sections.
Like packing, this technique is deployed to hide malicious code in order to make
it more difficult to detect. Encoding only the malicious sections of a malicious file
and decoding them before execution might evade heuristic detection of malware.

Masquerading All methods to manipulate or abuse names and locations
of legitimate files to evade defenses are grouped under this technique. We have
observed 165 instances of masquerading within our dataset, such as creating
a presence in the Program Files, Windows and driver directories. Furthermore
we found 101 files creating files within the system32 directory. 31 samples were
observed creating executable files named similar to existing Windows files, 19
other samples did employ names of commonly used third-party applications.

DLL Side-Loading We have observed 106 unique instances of DLL side-
loading, with 90 first observed from 2016 to 2018. Increasing from 0.36% of total
techniques detected in 2011 to 0.83% in 2018 as seen in table 2, we expect this
technique to keep increasing.

Packing and obfuscating sections of malicious code are standard measures
for malware authors with the above techniques being commonly observed. The
recent rise of DLL side-loading suggests that attackers are innovating their tech-
niques in order to ensure evasion of established mitigations.

5.5 Credential Access

This tactic describes techniques to obtain some form of privileged credentials
to be used in later stages of an attack. Below, Input Capture and Credential
Dumping will be discussed, which are the most prevalent techniques observed.

Input Capture We have found 94 samples capable of capturing user input.
54 samples did implement a global keyboard hook with the SetWindowsHookEx
function to intercept keystrokes. 31 samples were observed implementing func-
tionality to retrieve information about pressed keystrokes using functions such as
GetAsyncKeyState, GetKeyState and MapVirtualKeyA. 8 samples created a Dir-
ectInput object using the DirectDrawCreateEx function to capture keystrokes.

Credential Dumping This technique describes all means to obtain login
and password information from the operating system and software, which may
later be used for lateral movement on the network. We have found 56 samples im-
plementing techniques as harvesting browser history and passwords (44 samples)
and 9 samples querying for file locations and registry keys of common third-
party FTP tools. Another 9 samples queried the Login Data registry key used
by Chrome and IntelliForms2 , used by Internet Explorer to store passwords.



ATT&CK Techniques in Windows Malware 13

We have also observed 12 samples querying the file system and 6 samples
searching the Windows registry for stored credentials. Hooking, already dis-
cussed within the context of Persistence, is also a technique for Credential Ac-
cess. Though we have less results for this tactic, from our dataset it can be
observed that keylogging is the main method to capture user input to obtain
credentials, followed by dumping credentials from installed software.

5.6 Discovery

The Discovery tactic provides the basis for success of later attack stages. It
is essentially a second iteration of reconnaissance, consisting of techniques an
attacker deploys to gather information about an infected system and its place-
ment in the network. Many of the most observed techniques within our analysis
are part of the Discovery tactic. As most Discovery techniques deploy native
operating system functions, this activity is well-detected by dynamic analysis
environments, but also difficult to detect against.

Query Registry Querying the Windows registry to discover information
about the host system is the most common technique within our dataset, seen
in 950 samples. Most of the samples within our dataset have a capability to
read software restriction policies from the Windows registry by enumerating
HKEY LOCAL MACHINE\Software\Policies\Microsoft\Windows\Safer\
CodeIdentifiers. The DWORD value of AuthenticodeEnabled indicates whether
the execution of binaries is restricted by the OS. 345 samples have the ability
to query the machine globally unique identifier (GUID) from the registry, most
presumably as a unique identifier of the infected system.

Security Software Discovery We have found 748 samples capable of de-
tecting the presence of security features such as anti-virus software, local firewall
rules and virtualization software. We also observed a significant increase in the
implementation of security software discovery from 2010 to 2018, of which table
3 provides an overview. Anti-debugging is the most detected specific implement-
ation of this technique in 519 samples, by querying the SystemKernelDebugger-
Information function to detect a ring 0 debugger being attached to the current
process. 385 samples were observed detecting a debugger by checking the time
difference between two Windows API calls, GetProcessHeap and CloseHandle.
349 performed an API call to IsDebuggerPresent . Checking the presence of a
debugger by setting GetLastError in the registry to a random value and check-
ing whether it has changed after calling OutputDebugString is observed in 92
samples. 70 samples have been observed executing a Read-Time-Stamp-Counter
(RDTSC) instruction to determine the speed with which instructions are ex-
ecuted by the processor, of which the presence of a debugger might be inferred.
This specific method, first observed in 2012, has gained traction with 52 out of
70 samples first observed in 2016 or later.

The detection of virtual machines or sandbox environments is another pop-
ular form of anti-analysis that has gained adoption over the last couple of
years. We have observed 187 samples being able to detect various virtualization



14 K. Oosthoek and C. Doerr

Table 3. Relative implementation of security software discovery from 2010 to 2018.

year 2010 2011 2012 2013 2014 2015 2016 2017 2018

% of total 6.13% 8.73% 8.47% 9.38% 11.55% 12.46% 12.32% 11.80% 11.68%

products by detecting registry keys specific to guest sharing functionality, such
as HKEY LOCAL MACHINE\SYSTEM\ControlSet001\Services\VMTools. 44
samples were observed calling the PhysicalDrive0 function to check for strings
that might indicate the drive being virtualized.

Process Discovery Within the ATT&CK framework Process Discovery
describes all techniques to gather information about active processes on the
host system. Within our dataset 599 samples implement this technique during
runtime through calls to Windows functions such as CreateToolhelp32Snapshot ,
Process32First , Process32Next . 7 samples first observed from 2016 use task-
list.exe to discover running processes on both local and remote systems.

System Information Discovery This technique, supporting further ex-
ecution of the malware by querying operating system and hardware artifacts,
is implemented by 669 of the samples in our dataset. The most common im-
plementation is querying the Windows version using the GetVersion function,
observed in 399 samples. Retrieving locale information such as the language of
the user interface by querying the GetLocaleInfoA or GetLocaleInfoEx functions
of the Windows API is used in 399 samples. 152 samples get this information
in a similar way, using VirtualQuery and VirtualAlloc to gather information
about the memory contents. 179 samples have been observed to check CPU in-
structions, which might have anti-analysis purposes. Depending on the call, the
instruction can return the CPU’s manufacturer ID string, but also the hypervisor
brand. Certain return values might indicate whether the malware is running on
a physical or virtual machine. 24 samples retrieved processor information from
the Windows registry key HKEY LOCAL MACHINE\HARDWARE\
DESCRIPTION\System\CentralProcessor.

System Network Configuration Discovery 97 of the samples in our
dataset used variations of this technique. Of these samples, 60 called the Get-
AdaptersInfo function to retrieve information about the network adapter. Other
samples have been observed using ipconfig , netstat or netsh to lookup Windows
network configuration. Within this technique category, we have seen 24 samples
querying standard online IP and geolocation services to determine the online IP
address of the infected system.

Based on our analysis we see that Discovery is standard practice for malware.
For Security Software Discovery, we have observed an increase. Within that
technique, we see that the use of an RDTSC instruction to detect debuggers
has proliferated since 2016. Most discovery techniques used in malware blend
in with the flow of benign applications as they rely on native operating system
functions. This makes Discovery also a tactic difficult to mitigate, which makes
a case for application whitelisting to prevent the execution of malicious software
early in the life cycle.



ATT&CK Techniques in Windows Malware 15

5.7 Lateral Movement

Lateral Movement describes all techniques implemented to pivot over the net-
work to other systems of interest. The techniques of this tactic are difficult to
observe with dynamic analysis as many techniques depend upon manual attacker
intervention to pivot over the network, which is why this tactic touches less host
artifacts anyway. Also not every malware family might deploy lateral movement
techniques. Therefore the observations of techniques from this tactic are limited.
We will shortly discuss the techniques found for this tactic.

Remote File Copy This technique describes malicious download and up-
load activity within the network, as well to adversary-controlled infrastructure.
We have detected 423 instances of Remote File Copy, which mainly consists of
336 samples attempting to download additional files as detected by our ana-
lysis environment. 101 samples communicated using plain HTTP GET requests,
most of them storing result in the Temporary Internet Files directory. 18 mal-
ware families, among which Bagle, Bundestrojaner, Ransomlock, Redalpha and
Yty, established HTTPS connections.

Replication Through Removable Media We have found 30 samples try-
ing to infect USB storage devices by creating autorun.inf files with an Open or
ShellExecute entry.

Remote Desktop Protocol 8 samples were observed trying to start the
Remote Desktop service, which can be an effective stealth technique for lateral
movement, as it blends in with the normal network protocol flow.

Our observations for this tactic are limited, as lateral movement is generally
a non-automatic process, involving manual operations as the attacker pivots over
the network. However we found a significant number of 336 samples attempting
to download additional files, which makes a case for host monitoring of unusual
processes establishing a network connection.

5.8 Collection

The Collection tactic describes techniques deployed to gather sensitive inform-
ation. We found that the most observed techniques for this tactic all rely on
native Windows functions to acquire sensitive user information. This tactic is
difficult to prevent or detect, as the attacker did already bypass several defenses
and gained considerable foothold.

Clipboard Data In our analysis 94 malware samples attempted to obtain
data from Windows clipboard. In 48 instances, samples performed subsequent
calls to OpenClipboard and GetClipboardData. 21 samples started a window in
the clipboard class CLIPBRDWNDCLASS to obtain copy-paste operations.

Screen Capture 48 samples tried to capture GUI contents, primarily with
calls to functions such as GetDesktopWindow , GetWindowRect to retrieve win-
dow dimensions and BitBlt and GetDIBits to store the capture in a buffer.

Email Collection 20 samples actively collected of email messages by query-
ing file locations and registry keys associated with mail clients such as Windows
Mail client and Outlook.



16 K. Oosthoek and C. Doerr

As with lateral movement, we recognize that actual collection is difficult to
capture using dynamic analysis, which results in fewer observations within this
tactic. We however suspect that the use of scripting, of which we have found 71
instances, to automatically search and copy data depending on certain criteria
is also deployed for Collection purposes.

5.9 Exfiltration

The exfiltration tactic describes all techniques implemented to exfiltrate data
from the target to the attacker. Reporting of exfiltration depends on observation
of actual exfiltration attempts, which are difficult to capture with dynamic ana-
lysis. Furthermore not all attackers apply this tactic, as some (e.g. ransomware
authors) are not interested in exfiltrating data. We have found 576 being capable
of encrypting local data, which is described with the Data Encrypted technique.
We expect this number to be distorted by 27 samples of ransomware in our
dataset, which encrypts data but not for exfiltration purposes. Furthermore we
have found 6 samples capable of uploading files via FTP as these samples called
to the FtpPutFile function, identified as Exfiltration Over Alternative Protocol.

5.10 Command and Control

Within this tactic, the attacker is accessing the target network from a remote
location. In our analysis, 67 samples were observed to establish TCP or UDP
traffic on non-standard ports. This technique, described as Uncommonly Used
Port within ATT&CK, is known to be deployed to circumvent improper fire-
wall and proxy configurations. We have also found 47 samples being capable of
communicating with popular social media such as Facebook, Tumbler and paste
sites such as Pastebin, which are frequently used for C&C. Within the ATT&CK
framework this use case is classified under the Web Service technique. For the
C&C technique Multi-hop Proxy, we have detected 11 samples initiating a Tor
connection. Section 6 elaborates on the deployment of named pipes for C&C.

6 Adoption of sophisticated techniques

Within our analysis we have observed named pipes being implemented for C&C.
Previously exclusively implemented in malware attributed to sophisticated act-
ors, this technique is observed to have been adopted by less sophisticated mal-
ware authors. The attribution of malware to actor groups is part of the malware
metadata in Malpedia, the repository from which we have gathered our samples.
For its attribution of malware families to actors, Malpedia relies on reporting
from security vendors and independent security researchers. For instance, the
samples of Pupy available within Malpedia are attributed to Iranian actors based
on reports from 6 individual sources [15].

Named pipes are a method for inter-process communication (IPC), both with
local and remote processes. Dynamic malware analysis is suited for discovering



ATT&CK Techniques in Windows Malware 17

Table 4. New samples deploying IPC named pipes per year.

year 2010 2011 2012 2013 2014 2015 2016 2017 2018

observations 0 0 1 4 4 4 7 16 18

this technique, as a process is expected to call the CreateNamedPipe function of
the kernel32.dll kernel module to create a named pipe. The named pipe server
allows both local and remote processes to connect to the pipe and exchange
information with the malware. As it can set up communication via SMB and
RPC, is potentially also a technique that can be deployed to evade detection
of command and control (C&C) traffic. By setting up one compromised host as
internal C&C server to handle outbound traffic and having other compromised
hosts connect on a peer-to-peer basis via named pipes, the footprint of network
traffic is reduced considerably, which also reduces the odds of detection. The
earliest sample of malware known to implement named pipes for communication
with remote hosts is a variant of Conficker first observed in 2009 [22]. It also
reported to be deployed for C&C by the Duqu family [27].

The ATT&CK technique definition of Process Injection states that, apart
from the Windows implementations of the techniques described, ‘more sophist-
icated samples’ of malware may use named pipes or other IPC mechanisms as a
communication channel [28]. As named pipes may also be connected to remote
processes over SMB and RPC, it can also be deployed as a technique for C&C.

The detection of this technique within our dataset is in line with the Mitre
statement that named pipes are specific to the more advanced malware families.
As shown in table 4, we have observed an increase in the use of named pipes
within more recently observed samples. What attracts attention specifically is
that out of the 47 samples where our analysis environment has observed this tech-
nique being deployed, 38 samples were first observed in 2017 and 2018. Except
for samples from two families (Dorkbot, Snifula), based on Malpedia metadata,
all samples prior to 2015 are attributed to sophisticated actor groups. From 2016,
the technique is observed in malware attributed to sophisticated actor groups
(TurnedUp, Pupy, Mosquito, EternalPetya, PandaBanker, OlympicDestroyer),
but also in common crimeware such as Zeus, Karius, Trickbot, AlinaPOS, Qak-
Bot and ransomware (Gandcrab, PyLocky). This indicates that techniques pre-
viously attributed exclusively to advanced actor groups are getting adopted by
other malware authors.

7 Limitations of CTI from Automated Analysis

In the discussion of our results it became clear that detection of malicious ar-
tifacts naturally gravitates towards the intermediate tactics of the attack life
cycle. In that sense our analysis exposes issues inherent to malware research
with automated analysis. Most of these are known in the malware research field,
but as ATT&CK is primarily a CTI model, we will use this chapter to evaluate
the biases automated analysis might introduce to the CTI field.



18 K. Oosthoek and C. Doerr

Automated malware analysis suites offer a compelling solution to gain a
quick and timely overview of individual or bulk malware threats. Automated
analysis observes runtime behavior of malware. Attackers however might employ
stealth and deception techniques, such as anti-analysis and evasion. This could
result in malware not or only partially being detected, as it does not trigger
or branches to deception code. It must also be considered that any analysis
environment might not be able to fully detect all behavior exhibited by malware.
Results invariably depend on the capabilities of the resource used for analysis.
Still these are all known limitations to the concept of automated analysis of
malware, as it only reports behavior observed during a time-constrained runtime
[31]. But as automated malware analysis focuses on host and network artifacts of
malware, it is thus biased towards the reporting of those artifacts. These biases
become apparent when using a CTI-oriented model such as ATT&CK. As the
requirements for CTI tilt toward the latter stages of the framework and proper
CTI must never be biased, we might even argue that automated analysis is an
unsuited source when taken by itself.

Initial Access tactics, such as the delivery of a malicious email attachment,
are not accounted for during automated analysis. This also expresses in the
ATT&CK plotting of our results in figure 1. Techniques for Lateral Movement,
Exfiltration and C&C activity are difficult to record with a sandbox as the actual
execution of these tactics depends on certain preconditions, potential manual
attacker involvement and the availability of C&C infrastructure. The ATT&CK
framework accounts for deployment of evasive routines in malware within the
Defense Evasion tactic, which describes techniques used to evade detection or
avoid other defenses. Logically sandboxes only detect evasion to a limited extent.

As a consequence, customers of CTI reports based on automated analysis
of malware should be aware of the limitations inherent to the mechanism. An
accurate CTI product must take into account the full threat context and con-
sider alternative hypotheses. When used as a source of CTI, automated analysis
reports should be treated with a different confidence level than results of manual
research. Nonetheless it is evident that CTI benefits from a standardized lan-
guage like ATT&CK, as it fosters effective dissemination and decision-making.

8 Conclusion

Our work is the first to use the ATT&CK framework to present the results of the
analysis of techniques observed during execution of a large sample of malware.
Having identified established and emerging techniques from the framework, this
research is the first that provides an overview of a representative sample of
malware using the ATT&CK framework. Through this, we have demonstrated
the benefits of using an common taxonomy for the reporting of TTPs. We have
shown this improves the actionability and unambiguous communication of CTI
from sandbox analysis results.

We have observed differences in the degree of innovation between the dif-
ferent tactics of the ATT&CK framework. For the execution of malicious code,



ATT&CK Techniques in Windows Malware 19

most malware relies on the Windows API. We have identified an increase in
the implementation of fileless execution vectors using WMI and PowerShell.
Together with the use of obfuscated command lines, this shows how malware
authors are innovating their execution tactic to bypass traditional defenses. We
observed innovation in obtaining persistence through the use of task schedul-
ing, complementing established persistence techniques like autostart items and
creating a new service. Process injection remains the primary technique for priv-
ilege escalation. DLL side-loading seems to be on the rise in order to evade es-
tablished defenses, complementing more established evasive techniques such as
obfuscation and packing. For malware accessing user credentials, capturing user
input through keylogging is the most common technique within our dataset.
We found that discovery of security software has become standard practice for
most malware authors. We have shown different implementations observed for
this technique, as well that using RDTSC instructions to detect debuggers has
proliferated since 2016. The most common technique for lateral movement we
have observed malware is Remote File Copy.

We have shown how C&C via IPC named pipes, previously attributed to
sophisticated malware authors, is getting adopted by other actor groups. Through
this we identified that malware authors are innovating techniques in order to by-
pass traditional defense mechanisms.

9 Acknowledgments

The authors would like to thank the maintainers of Malpedia for providing ac-
cess to their malware repository and Joe Security for provisioning the sandbox
infrastructure. The authors would like to thank VirusTotal for providing access
to their API. The ATT&CK mapping built for this research has been shared
with Joe Security to develop ATT&CK mapping within their product.

References

1. Barabosch, T., Bergmann, N., Dombeck, A.: Quincy: Detecting host-based code
injection attacks in memory dumps. In: LNCS (2017)

2. Barabosch, T., Eschweiler, S., Gerhards-Padilla, E.: Bee master: Detecting host-
based code injection attacks. In: LNCS (2014)

3. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. USENIX Large-scale exploits and emergent threats (2009)

4. Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M.,
Wang, L.: On the analysis of the Zeus botnet crimeware toolkit. In: 2010 Eighth
International Conference on Privacy, Security and Trust (2010)

5. Chen, X., Andersen, J., Morley Mao, Z., Bailey, M., Nazario, J.: Towards an un-
derstanding of anti-virtualization and anti-debugging behavior in modern malware.
In: International Conference on Dependable Systems and Networks (2008)

6. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (2012)



20 K. Oosthoek and C. Doerr

7. Grill, B., Bacs, A., Platzer, C., Bos, H.: Nice boots!-A large-scale analysis of
bootkits and new ways to stop them. In: LNCS (2015)

8. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-Driven Computer Net-
work Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill
Chains. International Conference on Information Warfare & Security (2011)

9. Joe Security LLC: Joe Sandbox Cloud Community Edition
10. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L.: Cutting the gordian knot:

A look under the hood of ransomware attacks. In: LNCS (2015)
11. Kirat, D., Vigna, G., Kruegel, C.: BareCloud: Bare-metal Analysis-based Evasive

Malware Detection. In: 23rd USENIX Security Symposium (2014)
12. Kirillov, I.A., Beck, D.A., Chase, M.P., Martin, R.A.: The Concepts of the Malware

Attribute Enumeration and Characterization (MAEC) Effort (2009)
13. Laliberte, M.: A Twist On The Cyber Kill Chain: Defending Against A JavaScript

Malware Attack (2016)
14. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed mal-

ware (2007)
15. Malpedia: win.pupy, malpedia.caad.fkie.fraunhofer.de/details/win.pupy
16. Mansfield-Devine, S.: Fileless attacks: compromising targets without malware. Net-

work Security (2017)
17. Microsoft: Microsoft Security Bulletin MS14-027 (2014)
18. Nachreiner, C.: Kill Chain 3.0: Update the cyber kill chain for better defense (2015)
19. Obrst, L., Chase, P., Markeloff, R.: Developing an Ontology of the Cyber Security

Domain. In: Semantic Technologies for Intelligence, Defense, and Security (2012)
20. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: The Hidden Malware. IEEE

Security and Privacy (2011)
21. Plohmann, D., Clauss, M., Enders, S., Padilla, E.: Malpedia: A Collaborative Ef-

fort to Inventorize the Malware Landscape. The Journal on Cybercrime & Digital
Investigations (2018)

22. Porras, P., Saidi, H., Yegneswaran, V.: An analysis of conficker’s logic and rendez-
vous points. Computer Science Laboratory, SRI International, Tech. Rep (2009)

23. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos,
H., Van Steen, M.: Prudent practices for designing malware experiments: Status
quo and outlook. In: IEEE Symposium on Security and Privacy (2012)

24. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: LNCS (2008)

25. Sood, A.K., Enbody, R.J.: Crimeware-as-a-service-A survey of commoditized
crimeware in the underground market. International Journal of Critical Infrastruc-
ture Protection (2013)

26. Strom, B.E., Applebaum, A., Miller, D.P., Nickels, K.C., Pennington, A.G.,
Thomas, C.B.: MITRE ATT&CK: Design and Philosophy. Tech. rep., The Mitre
Corporation, McLean, VA (2018)

27. Symantec Security Response: W32.Duqu: the precursor to the next Stuxnet. Sy-
mantec Security Response (2011)

28. The Mitre Corporation: ATT&CK JSON Library (2018)
29. The Mitre Corporation: Enterprise Matrix - Windows (2018), https://

attack.mitre.org/matrices/enterprise/windows/
30. Verizon: 2018 Data Breach Investigations Report. Tech. rep., New York, NY (2018)
31. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox (2007)


